miércoles, 5 de octubre de 2011

MODULACION

PCM (Modulación por Pulsos Codificados) 

La modulación por impulsos codificados (MIC o PCM por sus siglas inglesas de Pulse Code Modulation) es un procedimiento de modulación utilizado para transformar una señal analógica en una secuencia de bits (señal digital), este método fue inventado por Alec Reeves en 1937. Una trama o stream PCM es una representación digital de una señal analógica en donde la magnitud de la onda analógica es tomada en intervalos uniformes (muestras), cada muestra puede tomar un conjunto finito de valores, los cuales se encuentran codificados



- La transformación de una señal analógica en digital por PCM se realiza mediante 3 pasos:

1) Muestreo

PCM (Modulación por pulsos codificados)

En los sistemas de transmisión de audio, por ejemplo, la señal es transportada de manera continua a lo largo de la portadora. Sin embargo, la pregunta fue si esto era realmente necesario para transmitir la señal completa  o si la transmisión del valor de la señal en intervalos regulares pudiera ser eficiente.

Nyquist examino el problema y concluyo que muestras tomadas en intervalos regulares de tiempo pueden ser usadas para transmitir una señal. Una señal continua que no contenga componentes espectrales mayores que la frecuencia B esta determinada en forma única por sus valores en intervalos uniformes menores a 1/2B. Expresado en términos de frecuencia, establece que la "frecuencia de muestreo debe ser mayor o igual al doble de la frecuencia máxima de la señal muestreada"

PCM (Modulación por pulsos codificados)fig

- Tomando la voz humana como ejemplo, se tiene :
fs= 2fmax

Donde:fmax= 4kHz Banda de la voz humana

Por lo tanto, las muestras se tomarían a un intervalo de tiempo de 125us.
Ts=1/[2(fmax)]

2) Cuantización

PCM (Modulación por pulsos codificados)

La cuantización representa la amplitud de un muestra por la amplitud del nivel discreto más cercano. Cada valor de muestra tendrá que ser representado por un código. El numero de niveles de cuantización "M" esta estrechamente relacionado con el numero de bits "n" que son necesarios para codificar una señal. En casos prácticos se usan 8 bits para codificar cada muestra, por lo tanto se tiene:

M=2= 256 niveles

3) Codificación

Después de ser cuantizada, la muestra de entrada, esta limitada a 256 valores discretos. La mitad de estas son muestras codificadas positivas, la otra mitad son muestras codificadas negativas. Existen muchos códigos diferentes:

- Natural.
- Simétrico.




SISTEMA AMERICANO
se utiliza principalmente en los sistemas PCM europeos, y la ley µ (u-law) se utiliza en los sistemas PCM americanos.
La formulación matemática de la Ley A es:
y= Ax / 1+ LA .......... para 0 =< x =< 1/A
y= 1+ L (Ax) / 1+ LA ..........para 1/A=< x =< 1
Siendo L logaritmo neperiano. El parámetro A toma el valor de 87,6 representando x e y las señales de entrada y salida al compresor.

SISTEMA EUROPEO
30 señales + 2 de control = 32 x 64,000 bps = 2.048 Mbps

MODULACION FSK
 Es una Forma de modulación angular de amplitud constante, similar a la modulación en frecuencia convencional, excepto que la señal modulante es un flujo de pulsos binarios que varía, entre dos niveles de voltaje discreto, en lugar de una forma de onda analógica que cambia de manera continua. La expresión general para una señal FSK binaria es:


v(t) = V c cos [ ( w c + v m(t) D w / 2 )t ] (1)

Donde v(t) = forma de onda FSK binaria

V c = amplitud pico de la portadora no modulada
w c = frecuencia de la portadora en radianes
v m(t) = señal modulante digital binaria
D w = cambio en frecuencia de salida en radianes

 
La salida de un modulador de FSK binario, es una función escalón en el dominio del tiempo. Conforme cambia la señal de entrada binaria de 0 lógico a 1 lógico, y viceversa, la salida del FSK se desplaza entre dos frecuencias: una frecuencia de marca o de 1 lógico y una frecuencia de espacio o de 0 lógico. Con el FSK binario, hay un cambio en la frecuencia de salida, cada vez que la condición lógica de la señal de entrada binaria cambia. Un transmisor de FSK binario sencillo se muestra en la figura l.


FIGURA 1

Consideraciones de ancho de banda del FSK


FIGURA 2
La figura 2 muestra un modulador de FSK binario que a menudo son osciladores de voltaje controlado (VCO). El más rápido cambio de entrada ocurre, cuando la entrada binaria es una onda cuadrada. En consecuencia, si se considera sólo la frecuencia fundamental de entrada, la frecuencia modulante más alta es igual a la mitad de la razón de bit de entrada.
La frecuencia de reposo del VCO se selecciona de tal forma que, cae a medio camino, entre las frecuencias de marca y espacio. Una condición de 1 lógico, en la entrada, cambia el VCO de su frecuencia de reposo a la frecuencia de marca; una condición de 0 lógico, en la entrada, cambia cl VCO de su frecuencia de reposo a la frecuencia de espacio. El índice de modulación en FSK es
MI = Df / f a (2)
donde MI = índice de modulación (sin unidades)
Df = desviación de frecuencia (Hz)
f a = frecuencia modulante (Hz)
El peor caso, o el ancho de banda más amplio, ocurre cuando tanto la desviación de frecuencia y la frecuencia modulante están en sus valores máximos. En un modulador de FSK binario, Df es la desviación de frecuencia pico de la portadora y es igual a la diferencia entre la frecuencia de reposo y la frecuencia de marca o espacio. La desviación de frecuencia es constante y, siempre, en su valor máximo. f a es igual a la frecuencia fundamental de entrada binaria que bajo la condición del peor caso es igual a la mitad de la razón de bit (f b). En consecuencia, para el FSK binario,

FIGURA 3
donde ï f m - f s ï/ 2 = desviación de frecuencia
f b = razón de bit de entrada
f b /2 = frecuencia fundamental de la señal de entrada binaria
En un FSK binario el índice de modulación, por lo general, se mantiene bajo 1.0, produciendo así un espectro de salida de FM de banda relativamente angosta. Debido a que el FSK binario es una forma de modulación en frecuencia de banda angosta, el mínimo ancho de banda depende del índice de modulación. Para un índice de modulación entre 0.5 y 1, se generan dos o tres conjuntos de frecuencias laterales significativas. Por tanto, el mínimo ancho de banda es dos o tres veces la razón de bit de entrada.

Receptor de FSK

El circuito que más se utiliza para demodular las señales de FSK binarias es el circuito de fase cerrada (PLL), que se muestra en forma de diagrama a bloques en la figura 3. Conforme cambia la entrada de PLL entre las frecuencias de marca y espacio, el voltaje de error de cc a la salida del comparador de fase sigue el desplazamiento de frecuencia. Debido a que sólo hay dos frecuencias de entrada (marea y espacio), también hay sólo dos voltajes de error de salida. Uno representa un 1 lógico y el otro un 0 lógico. En consecuencia, la salida es una representación de dos niveles (binaria) de la entrada de FSK. Por lo regular, la frecuencia natural del PLL se hace igual a la frecuencia central del modulador de FSK. Como resultado, los cambios en el voltaje de error cc, siguen a los cambios en la frecuencia de entrada analógica y son simétricos alrededor de 0 V.

Transmisión de desplazamiento mínimo del FSK

La transmisión de desplazamiento mínimo del FSK (MSK), es una forma de transmitir desplazando la frecuencia de fase continua (CPFSK). En esencia, el MSK es un FSK binario, excepto que las frecuencias de marca y espacio están sincronizadas con la razón de bit de entrada binario. Con MSK, las frecuencias de marca y espacio están seleccionadas, de tal forma que están separadas de la frecuencia central, por exactamente, un múltiplo impar de la mitad de la razón de bit [f m y f s = n( f b / 2 ), con n = entero impar]. Esto asegura que haya una transición de fase fluida, en la señal de salida analógica, cuando cambia de una frecuencia de marca a una frecuencia de espacio, o viceversa.

TRANSMISIÓN DE DESPLAZAMIENTO DE FASE (PSK)

Transmitir por desplazamiento en fase (PSK) es otra forma de modulación angular, modulación digital de amplitud constante. El PSK es similar a la modulación en fase convencional, excepto que con PSK la señal de entrada es una señal digital binaria y son posibles un número limitado de fases de salida.


sábado, 24 de septiembre de 2011

PROCESOS DE CONVERSION

CONVERTIDOR ANALÓGICO-DIGITAL


La salida de los sensores, que permiten al equipo electrónico interaccionar con el entorno, 
es normalmente una señal analógica, continua en el  tiempo. En consecuencia, esta 
información debe convertirse a binaria (cada dato analógico decimal codificado a una 
palabra formada por unos y ceros) con el fin de adaptarla a los circuitos procesadores y de 
presentación. Un convertidor analógico-digital (CAD) es un circuito electrónico integrado 
cuya salida es la palabra digital resultado de convertir la señal analógica de entrada. 
La conversión a digital se realiza en dos fases: cuantificación y codificación. Durante la 
primera se muestrea la entrada y a cada valor analógico obtenido se asigna un valor o 
estado, que depende del número de bits del CAD. El  valor cuantificado se codifica en 
binario en una palabra digital, cuyo número de bits depende de las líneas de salida del CAD. 
Estos dos procesos determinan el diseño del circuito integrado. 
En la práctica, el proceso de conversión está sujeto a numerosas limitaciones resultado 
de los procesos de fabricación. Las más relevantes son el tiempo de conversión y la finitud 
del número de estados de salida. La conversión involucra un tiempo y, en consecuencia, 
supone una incertidumbre que limita la velocidad máxima de la entrada. Los valores 
discretos del proceso de cuantificación llevan consigo un error y una limitación de 
resolución del circuito. La elección del CAD en un  diseño electrónico dependerá de la 
adaptación de sus rasgos a  los requerimientos de la aplicación. 
El capítulo se estructura como sigue. En el primer  apartado se exponen los principios 
operativos mediante ejemplos de operación de CADs. El segundo apartado tiene por fin 
exponer los tipos más comunes de CADs, el de doble  rampa y el de aproximaciones 
sucesivas. En el tercer apartado se analizan los parámetros o características de un circuito 
integrado genérico. Finalmente, en el apartado 4 se selecciona un CAD en un diseño 
electrónico. 



FILTRO ACTIVO PASA BAJO



Este es un circuito formado por un resistor y un capacitor conectados en serie.
El filtro paso bajo permite sólo el paso de frecuencias por debajo de una frecuencia en particular llamadafrecuencia de corte (Fc) y elimina las frecuencias por encima de esta frecuencia.

Estos filtros RC no son perfectos por lo que se hace el análisis en el caso ideal y el caso real.





El filtro paso bajo ideal es un circuito formado por una resistor y un capacitor, que permite el paso de las frecuencias por debajo de la frecuencia de corte (Fc) y elimina las que sean superiores a ésta.

La reactancia capacitiva cambia con la frecuencia. Para altas frecuencias XC es baja logrando con esto que las señales de estas frecuencias sean atenuadas. En cambio a bajas frecuencias (por debajo de la frecuencia de corte) la reactancia capacitiva es grande, lo que causa que estas frecuencias no se vean afectadas o son afectadas muy poco por el filtro.
Con la ley de Ohm:
- Vin = I x Z = I x (R2 + XC21/2
- Vo = I x XC
- Vo = Vin / ( 1 + (2 x π x RC)2 )1/2

donde Z = Impedancia
La frecuencia de corte es aquella donde la amplitud de la señal entrante cae hasta un 70.7 % de su valor máximo. Y esto ocurre cuando XC = R. (reactancia capacitiva = resistencia)
Si XC = R, la frecuencia de corte será: Fc = 1 / (2 x π x RC)
La banda de frecuencias por debajo de la frecuencia de corte se llama Banda de paso, y la banda de frecuencias por encima de Fc se llama Banda de atenuación.


MUESTREO


El muestreo digital es una de las partes del proceso de digitalización de las señales. Consiste en tomar muestras de una señal analógica a una frecuencia o tasa de muestreo constante, para cuantificarlas posteriormente
El teorema de muestreo de Nyquist-Shannon, también conocido como teorema de muestreo de Whittaker-Nyquist-Kotelnikov-Shannoncriterio de Nyquist o teorema de Nyquist, es unteorema fundamental de la teoría de la información, de especial interés en las telecomunicaciones.
El teorema trata con el muestreo, que no debe ser confundido o asociado con la cuantificación, proceso que sigue al de muestreo en la digitalización de una señal y que, al contrario del muestreo, no es reversible (se produce una pérdida de información en el proceso de cuantificación, incluso en el caso ideal teórico, que se traduce en una distorsión conocida como error o ruido de cuantificación y que establece un límite teórico superior a la relación señal-ruido). Dicho de otro modo, desde el punto de vista del teorema, las muestras discretas de una señal son valores exactos que aún no han sufrido redondeo o truncamiento alguno sobre una precisión determinada, esto es, aún no han sido cuantificadas.



CUANTIFICION 



El proceso de cuantificación es uno de los pasos que se siguen para lograr la digitalización de una señal analógica.
Procesos de la conversión A/D.
Básicamente, la cuantificación lo que hace es convertir una sucesión de muestras de amplitud continua en una sucesión de valores discretos preestablecidos según el código utilizado.
Durante el proceso de cuantificación se mide el nivel de tensión de cada una de las muestras, obtenidas en el proceso de muestreo, y se les atribuye un valor finito (discreto) de amplitud, seleccionado por aproximación dentro de un margen de niveles previamente fijado.
Los valores preestablecidos para ajustar la cuantificación se eligen en función de la propia resolución que utilice el código empleado durante la codificación. Si el nivel obtenido no coincide exactamente con ninguno, se toma como valor el inferior más próximo.
En este momento, la señal analógica (que puede tomar cualquier valor) se convierte en una señal digital, ya que los valores que están preestablecidos, son finitos. No obstante, todavía no se traduce al sistema binario. La señal ha quedado representada por un valor finito que durante la codificación (siguiente proceso de la conversión analógico digital) será cuando se transforme en una sucesión de ceros y unos.
Así pues, la señal digital que resulta tras la cuantificación es diferente a la señal eléctrica analógica que la originó, algo que se conoce como Error de cuantificación. El error de cuantificación se interpeta como un ruido añadido a la señal tras el proceso de decodificación digital. Si este ruido de cuantificación se mantiene por debajo del ruido analógico de la señal a cuantificar (que siempre existe), la cuantificación no tendrá ninguna consecuencia sobre la señal de interés.



CODIFICACION



Se entiende por Codificación en el contexto de la Ingeniería al proceso de conversión de un sistema de datos de origen a otro sistema de datos de destino. De ello se desprende como corolario que la información contenida en esos datos resultantes deberá ser equivalente a la información de origen. Un modo sencillo de entender el concepto es aplicar el paradigma de la traducción entre idiomas en el ejemplo siguiente: home = hogar. Podemos entender que hemos cambiado una información de un sistema (inglés) a otro sistema (español) y que esencialmente la información sigue siendo la misma. La razón de la codificación está justificada por las operaciones que se necesiten realizar con posterioridad. En el ejemplo anterior para hacer entendible a una audiencia hispana un texto redactado en inglés es convertido al español.
En ese contexto la codificación digital consiste en la traducción de los valores de tensión eléctrica analógicos que ya han sido cuantificados (ponderados) alsistema binario, mediante códigos preestablecidos. La señal analógica va a quedar transformada en un tren de impulsos de señal digital (sucesión de ceros y unos). Esta traducción es el último de los procesos que tiene lugar durante la conversión analógica-digital. El resultado es un sistema binario que está basado en el álgebra de Boole.



CONVERTIDOR DIGITAL-ANALÓGICO




En la mayoría de los sistemas electrónicos resulta conveniente efectuar las funciones de regulación y control automático de sistemas mediante técnicas digitales, sin embargo en muchos de los casos la señal disponible normalmente es analógica, ya que son muchos los transductores que poseen su salida eléctrica analógica, correspondiente a la magnitud medida, como pueden ser las señales de audio, de vIdeo, los puentes de medición, las celdas extensiométricas, los termopáres, etc, esto obliga a tener que efectuar una conversión analógica digital, las señales digitales minimizan además la distorsión producida por las imperfecciones del sistema de transmisión, por otro lado puede ser necesario actuar analógicamente sobre un controlador ó algún elemento de control final, ó se debe efectuar una representación analógica sobre un registrador, un monitor, papel, etc. lo que obliga a realizar la conversión inversa, digital analógica, se hace necesario disponer de elementos capaces de efectuar esta conversión en uno u otro sentido, con características de velocidad y precisión adecuadas a cada caso.


LOS CONVERTIDORES DIGITALES ANALÓGICOS
Definición;
"Un convertidor Digital/Analógico (DAC), es un elemento que recibe información de entrada digital, en forma de una palabra de "n" bits y la transforma a señal analógica, cada una de las combinaciones binarias de entrada es convertida en niveles lógicos de tensión de salida".
Un convertidor digital analógico transfiere información expresada en forma digital a una forma analógica, para ubicar la función de este dispositivo conviene recordar que un sistema combina y relaciona diversos subsistemas que trabajan diferentes tipos de información analógica, como son; magnitudes eléctricas, mecánicas, etc,.. lo mismo que un micrófono, un graficador, o un motor y estos deberán interactuar con subsistemas que trabajan con informaciones digitales, como una computadora, un sistema lógico, un sistema con microprocesador, con microcontrolador o con algún indicador numérico.
APLICACIONES DE LOS DAC’S
Las aplicaciones más significativas del DAC son;
  • En instrumentación y control automático, son la base para implementar diferentes tipos de convertidores analógico digitales, así mismo, permiten obtener, de un instrumento digital, una salida analógica para propósitos de graficación, indicación o monitoreo, alarma, etc.
  • El control por computadora de procesos ó en la experimentación, se requiere de una interfase que transfiera las instrucciones digitales de la computadora al lenguaje de los actuadores del proceso que normalmente es analógico.
     
  • En comunicaciones, especialmente en cuanto se refiere a telemetría ó transmisión de datos, se traduce la información de los transductores de forma analógica original, a una señal digital, la cual resulta mas adecuada para la transmisión.
Características básicas de los convertidores;

Las características básicas que definen un convertidor digital analógico son en primer lugar, su resolución que depende del número de bits de entrada del convertidor, otra característica básica es la posibilidad de conversión unipolar ó bipolar, una tercera característica la constituye el código utilizado en la información de entrada, generalmente los convertidores digitales analógicos operan con el código binario natural ó con el decimal codificado en binario (BCD), el tiempo de conversión es otra característica que definen al convertidor necesario para una aplicación determinada, y se define como el tiempo que necesita para efectuar el máximo cambio de su tensión con un error mínimo en su resolución, otras características que definen al convertidor son; su tensión de referencia, que puede ser interna o externa, si es externa puede ser variada entre ciertos márgenes, la tensión de salida vendrá afectada por este factor, constituyéndose éste a través de un convertidor multiplicador, así mismo deberá tenerse en cuenta, la tensión de alimentación, el margen de temperatura y su tecnología interna.



(R-2R) Amp. Sumador.


Un amplificador operacional (comúnmente abreviado A.O. u op-amp), es un circuito electrónico (normalmente se presenta como circuito integrado) que tiene dos entradas y una salida. La salida es la diferencia de las dos entradas multiplicada por un factor (G) (ganancia):
Vout = G·(V+ − V)


invest/instrument_electro/ppjjgdr/Electronics_Instrum/Electronics_Instrum_Files/temas/T11_CAD.pdf
http://148.202.12.20/~osalas/instrumentacion/DAC.htm
http://es.wikipedia.org/wiki/Conversi%C3%B3n_anal%C3%B3gica-digital
http://electronicacompleta.com/lecciones/circuitos-digitales/
http://www.ucm.es/info/eurotheo/diccionario/C/comunicacion_anadigi.pdf